

Analyzing Transaction database using Fast Online Dynamic-Growth
(FOLD-growth) algorithm

May Me Me Hlaing, Nang Saing Moon Kham
University of Computer Studies, Yangon

maymimihlaing@gmail.com

Abstract

Data mining is the process of analyzing
large data sets in order to find patterns. Mining
frequent patterns is a fundamental and crucial task in
data mining problems. The association rule mining
is needed in order to search for interesting
relationship among items from a very large database.
FP-Growth algorithm that allows mining of the
frequent itemsets without candidate generation. In
this paper, implement the pattern growth approach
(FOLD-Growth) algorithm is used to analyze
transaction database in the real world.

1. Introduction

Data mining is the process of analysis of
raw data in the database and synthesizing it into
information that is useful for affective decision
making. Association rule mining finds interesting
association or correlation relationships among a large
set of data items. Frequent patterns are patterns that
appear in a dataset frequently .A set of items that
appear frequently together in a transaction dataset is
a frequent itemset. The supported-Order Tree is
constructed by extracting 1-itemsets and 2-itemsets
from all transactions. It can be constructed online ,
meaning that each time a new transaction arrives, and
Support-Ordered Tree can be incrementally updated.

In this paper, there are six sections. Section
1 describes the introduction of this paper. In section
2, related works for this presented system. Section 3
describes the Background Theory used by this
system. Section 4 is the description of proposed
system architecture. In section 5, the implementation
of this system described. Section 6 is the conclusion
of this paper. This paper aims to analyze which car
type and car parts are most frequently repaired by
user and to understand how to extract the frequent
pattern from transaction database using FOLD-
Growth theory.

2. Related work

Mining frequent patterns are a fundamental
and essential problem in many data mining

applications[2]. This process analyses customer
buying habits by finding associations between the
different items that customers place in their
“shopping basket”. Association rule mining
introduced by Rakesh Agrawal is an important
research problem in data mining field.[4] Association
rule mining aims at detecting the relationship of
tupels in transaction database and serving decision
making. The basic algorithm for mining frequent
itemsets is Apriori algorithm. [3].
 It generates Ck (candidate itemsets) in a
pass k (number of itemset) using only Lk-1 (frequent
itemsets) in the previous pass . Hence, Ck can be
generated by joining Lk-1 deleting those that contain
any subset that is not frequent[3]. In many cases, the
Apriori candidate generate–and–test method
significantly reduces the sizes of candidate sets,
leading to good performance gain. However, it can
suffer from two nontrivial costs. It may need to
generate a huge number of candidate sets and need to
repeatedly scan the database and check a large set of
candidates by pattern matching.[4].
 Frequent–pattern growth (FP-growth) which
adopts a divide-and-conquer strategy as follows.
First, it compress the database representing items into
frequent pattern which retain the itemset association
information. It then divides the compressed database
into a set of conditional database, each associated
with one frequent item or ”pattern fragment”, and
mines each such database separately[4]. FP-growth
method shows that is efficient and scalable for
mining both long and short frequent pattern, and is
about an order of magnitude faster than Apriori
algorithm[5].
 The Support-Ordered Tree is constructed by
extracting 1-itemsets and 2-itemsets from all
transactions and using them to update the Support-
Ordered Tree. The Support-Ordered Tree, all
transactions are mapped onto a tree structure. Tree is
ordered by support count (speed up search) and
reduces construction time. To find frequent itemsets,
the structure is simply traversed using depth-first
search.[6]

3. Data Mining

Data mining refers to extracting or mining
knowledge from large amounts of data. Data mining
is knowledge mining from database, knowledge

extraction, data/pattern analysis, data archaeology
and data dredging. In data mining, there is another
popularly used term, knowledge discovery in
database or KDD. Knowledge discovery as a process
consists of an interactive sequence of seven steps.
Data cleaning (to remove noise and inconsistent data)
, Data integration (where multiple data sources may
be combined) , Data selection (where data relevant to
the analysis task are retrieved from database) , Data
transformation (where data are transformed or
consolidated into forms appropriate for mining by
performing summary or aggregation operations, for
instance) , Data mining (an essential process where
intelligent methods are applied in order to extract
data patterns) , Pattern evaluation (to identify the
truly interesting patterns representing knowledge
based on some interestingness measures) and
Knowledge presentation (where visualization and
knowledge representation techniques are used to
present the mined knowledge to the user).

Data mining involves an integration of
techniques from multiple disciplines such as database
and data warehouse technology, statistics machine
learning, high performance computing, pattern
recognition, neural networks, data visualization,
information retrieval, image and signal processing,
and spatial or temporal data analysis.[1]

3.1 Mining frequent patterns and
Associations

Frequent patterns, as the name suggests, are

patterns that occur frequently in data. There are many
kinds of frequent patterns, including itemsets,
subsequences, and substructures. A frequent itemset
typically refers to a set of items that frequently
appear together in a transactional data set. Mining
frequent patterns leads to the discovery of interesting
association.
 Association rule mining finds interesting
association or correlation relationships among a large
set of data items. The discovery of interesting
association relationships among huge amounts of
business transaction records can help in many
business decision making process. Association rule
mining is a two- step process.
1 Find all frequent itemsets : By definition,

each of these itemsets will occur at least as
frequently as a pre-determined minimum
support count.

2 Generate strong association rules from the
frequent itemsets: By definition, these rules
satisfy minimum support and minimum
confidence.

Algorithms that calculate association rules work
in two phases. In the first phase, all combinations of
items that have the required minimum support (called
the "frequent itemsets") are discovered. In the second

phase, rules of the form X � Y with the specified
minimum confidence are generated form frequent
itemsets.

Support of a rule is a measure of how frequently
the items involved in it occur together. Using
probability notation, support (A�B) = P(AUB).
Confidence of a rule is the conditional probability of
B given A. Using probability notation, confidence
(A�B) = P(B/A) , which equal to P (AUB) / P (A).
These statistical measures can be used to rank the
rules.

3.2 FOLD-growth algorithm

 FOLD-growth algorithm is the hybrid
version of frequent pattern (FP-growth) algorithm.
FOLD-growth, 1-itemsets (L1) and 2-itemsets (L2)
can be found promptly by using the Support-Ordered
Tree algorithm because there is no need to scan the
database. We apply FP-growth to discover the rest of
the frequent itemsets. The FOLD-growth algorithm is
as follows:

1. Use the SOTrieIT to quickly discover L1
and L2

2. if L 1= Ø and V L2 = Ø
3. then Terminate algorithm
4. end if
5. for transaction T Є D do
6. Remove items that will not contribute to Lk,

where k>2,using L1 and L2
7. Sort items in support descending order
8. Construct/Update the FP-tree with trimmed

and sorted T
9. end for
10. Run FP-Growth algorithm on constructed

FP-tree
With the SOTrieIT, L1 and L2 can be

quickly found and they can be used to further
prune the transactions that are used to
constructed FP-tree. Hence, only one database
scan is needed to start building the FP-tree. If
L2 is not found, we can terminate the algorithm
immediately because all possibly frequent
itemsets, n this case L1 are already found.
Therefore, since FOLD-growth uses SOTrieIT,
it can be said to be more incremental than FP-
growth to a certain extent even through FOLD-
growth itself is not incremental.

3.2.1 Support-Ordered Trie Itemsets

 (SOTrieIT)

The Support-Ordered Tree is constructed by
extracting 1-itemsets and 2-itemsets from all
transactions and using them to update the Support-

Ordered Tree. Figure 1 shows the Support-Ordered
Tree built from a sample database with just four
transactions. The tree is ordered by support count.
The bracket number beside a node's label denotes the
support count. It nodes are support-ordered and have
two levels of nodes (excluding the special ROOT
node).

TID Items

100 AC
200 BC
300 ABC
400 ABCD

 Root

 C(4) A(3) B(3) D(1)

D(1) C(3) B(2) D(1) C(3) D(1)

Figure 1: Support-Ordered Tree constructed from
sample database

The main strength of the Support-Ordered Tree
lies in its speed in discovering L1 (1-itemsets) and L2

(2-itemsets). L1 and L2 can be found promptly
because there is no need to scan the database. In
addition, the search (depth-first) can be stopped at a
particular level the moment a node representing a
non-frequent itemset is found because the nodes are
all support-ordered. Another advantage of the
SOTrieIT is that it can be constructed online,
meaning that each time a new transaction arrives, and
the SOTrieIT can be incrementally updated. It
requires for less storage space than a tire because it is
only two levels deep and can be easily stored in both
memory and files. [2]

3.2.2 Frequent Pattern Growth(FP-growth)

Frequent-pattern tree (FP-tree) structure is
an extended prefix-tree structure for sorting
compressed, crucial information about frequent
patterns. An efficient FP-tree based mining method:
FP-growth is mining the complete set of frequent
patterns by pattern fragment growth.

The first scan of the database which derives

the sets of frequent items (1-itemsets) and their
support counts (frequencies). The set of frequent
items is sorted in order of descending support count.
An FP-tree is then constructed is follows: First,
create the root of the tree, labeled with “null”. Scan a
database is second time. The items in each
transaction are processed in L order (i.e., sorted
according to descending support count), and a branch
is created for each transaction. In general, when
considering the branch to be added for a transaction,
the count of each node along a common prefix is
incremented by 1, and nodes for the items following
the prefix are created and linked accordingly. The
tree obtained after scanning all of the transactions
with the associated node-links. In this way, mining
frequent patterns in databases is transformed to that
of mining the FP-tree. The FP-tree is mined as
follows. Start from each frequent length-1 patterns
(as an initial suffix pattern), construct its conditional
pattern base (a “sub-database,” which consists of the
set of prefix paths in the FP-tree co-occurring with
the suffix pattern), then construct its conditional FP-
tree, and perform mining recursively on such a tree.
The pattern growth is achieved by concatenation of
the suffix pattern with the frequent patterns generated
from a conditional FP-tree.

The FP-growth method transforms the
problem of finding long frequent patterns to
searching for shorter ones recursively and
concatenating the suffix. It uses the least of frequent
items as a suffix, offering good selectivity.

4. Flow of the proposed system

This system aims to analyze which car type
and car parts are most frequently repaired by user and
to understand how to extract the frequent pattern
mining from transaction database using FOLD-
Growth theory. Figure 2 shows flow of the proposed
system.

Figure 2: Flow of the proposed system

In Figure 2, accessing database phase
consists of inserting new data and deleting
transactions. In analysis phase, user input minimum
support and minimum confidence thresholds. Then,
the system runs the Support-Ordered Tree (SOTrieIT)
algorithm. If the user want to know 1-itemsets or 2-
itemsets, the system show result that satisfy
minimum support and minimum confidence without
using the FP-growth algorithm. The SOTrieIT allows
1-itemsets and 2-itemsets to be discovered without
computation and without database scans and
regardless of the support threshold. So, the SOTrieIT
algorithm can quickly discover the access pattern.

If the user want to know more than 2-
itemsets, the system apply FP-growth algorithm
using the result of SOTrieIT and show result that
satisfy minimum support and minimum confidence.
The method substantially reduces the search costs.

5. Implementation of the system

The system is implemented for discovering
and analyzing car types and car parts which are
frequently repaired by the users. It is developed by
using Microsoft C#.Net and MySQL Server 2005 for
data storage. The system based on transactions using
between 1-year. The transaction database consists of
transaction ID, Car type, Usage type and Repair
parts.

In this system, there are four analysis types
such as car type, repair part, car type and repair part
and frequent patterns (pair of frequently repaired
parts). In Analysis phase, user input minimum
support and minimum confidence thresholds. If the
user want to know analysis by car type or analysis by
repair part or analysis car type and repair part, the
system run the SOTrieIT algorithm.

 First, all transactions are mapped onto a tree
structure. The nodes in the first level are car types
and the nodes in the second level are repair parts
associated car types in the first level. This mapping
involves the extraction of the transaction items and
the updating of the tree structure. The tree structure
contains all the support counts of items beside the
tree node label.

To find frequent itemsets, the structure is
simply traversed using depth-first search. If the users
want to know car type, the system shows nodes in the
first level as result . If the users want to know repair
part, the system shows nodes in the second level as
result. Otherwise, the users want to know car type
and repair part, the system show result by using
depth-first search theory. The results of the system
must satisfy user defined minimum support and
minimum confidence.
 If the user analyze car type and repair part,
the system displays the layout of the analysis page by
running the SOTrieIT algorithm in Figure 3.

Figure 3: Analysis of car type and repair part

If the user want to know frequent itemsets

(pair of frequently repaired parts) for a car type, the
system run FP-growth algorithm by using the result
of SOTrieIT algorithm. With the SOTrieIT, 1-
itemsets and 2-itemsets can be quickly found and
they can be used to construct the FP-tree. Hence,
only one database scanning is needed to construct the
FP-tree. After database scanning, items in the
transactions are sorted according to the order of 1-
itemsets.These sorted items are used to construct the
FP-tree. FP-growth then proceeds to recursively mine
FP-tree of decreasing size to generate frequent
itemsets without candidate generation and database
scanning. Conditional pattern base of the FP-tree
which consists of the set of frequent itemsets
occurring with the suffix pattern. The layout of the
association rules for the analysis by frequent pattern
in Figure 4.

Figure 4: Analysis of frequent pattern

The result of the system change depending

upon user defined minimum support and minimum
confidence values. With minimum support as 10 and

minimum confidence as 50%, the result is as shown
in Figure 4. If the user changes minimum support as
15 and minimum confidence is 60%, the result may
also change as shown in Figure 5.

Figure 5: Analysis of frequent pattern

Table 1: Experimental results for car type as
 Corona and usage type as Business

6. Conclusion

This paper proposed Fast frequent itemsets

discovery known as the SOTrieIT to enhance the
performance of association rule mining. Besides
being support independent, incremental, and space
efficient, it allows FOLD-growth, tailor-made
algorithm for the SOTrieIT to perform faster than
FP-growth. The system give user the result for the
fast discovery of frequently repaired car type and car
parts, The system provide 1-itemsets and 2-itemsets
quickly using SOTrieIT algorithm without using FP-
growth algorithm. Otherwise, the system gives result
for more than 2-itemsets by using FP-growth theory.

7. References

[1] A.Sawmi, R. Agrawal,and T. Imielinski, “Mining
association rules between sets of items in large
databases.” In proc. of the ACM SIGMOD
Conference on Management of Data, pages 207-216,
May 1993.

[2] B.Goethals and M.J.Zaki. “Advances in frequent
itemset mining implementations”: introduction to
fimi03. In proceeding of the 1st IEEE ICDM
Workshop on Frequent Itemsets Mining
Implementation (FIMI'03), Nov 2003.

[3] “Generating a Condensed Representation for
Association Rules”, Journal of Intelligent
Information Systems, 24:1, 29–60, 2005. 2005
Springer Science Business Media, Inc. Manufactured
in the Netherlands

[4] Jiawei Han and Micheline Kamber,
“Data Mining Concepts and Techniques”

[5] J.Han, J.Pei, and Y.Yin,
“Mining Frequent patterns without Candidate
Generation,” Proc.ACM SIGMOD Conf.,pp.1-
12,2000.

[6] Yew-Kwong Woon,

"A Support-Ordered Trie for Fast Frequent
Itemset Discovery"

 Wee-Keong Ng, Member, IEEE Computer
 Society, and Ee-Peng Lim, Senior Member, IEEE

Minimum
support

Minimum
confidence

Number of
association rules

10 50 % 23

10 60 % 11

10 70 % 9

15 60 % 8

20 50 % 6

